

## Cost effectiveness of greenhouse gas policies to 2027

Vera Eory and Dominic Moran vera.eory@sac.ac.uk

Agriculture and Climate Change Workshop 7/10/2011

## Outline



#### **Topics covered**

- 1. Scottish GHG emissions and targets
- 2. Climate change policies for agriculture
- 3. MACC (Marginal Abatement Cost Curve)
- 4. Policy assessment, RPP1
- 5. RPP2 preliminary results

## **GHG** emissions and targets





|   | Mt CO <sub>2</sub> e/y | 1990 | 2008                                   | 2022 |           |
|---|------------------------|------|----------------------------------------|------|-----------|
|   | Rural land use         | 13.8 | 11.6                                   | 10.6 |           |
|   | Scotland total         | 70.1 | 56.1                                   | 38.3 |           |
| 1 |                        |      | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |      |           |
| 1 |                        |      | · · · · · · · · · · · · · · · · · · ·  | Sc   | urce: RPF |

## Tackling climate change in agriculture



Low Carbon Scotland: Meeting the Emissions Reduction Targets 2010-2022 - Report on Proposals and Policies (March 2011)

Farming for a Better Climate

Scotland Rural Development Programme (SRDP)

Common Agricultural Policy (cross-compliance; post-2017)

## Mitigation options – which ones to choose?

#### **Economically efficient GHG reduction**

 Many options targeting e.g. nutrient management, livestock efficiency, manure management – how to select the best ones?

SAC

 Compare their effectiveness: go for high GHG abatement and low cost

• MAC curve (Marginal Abatement Cost Curve)

#### The MAC curve



#### **Key stages**

- 1. Identifying possible mitigation options
  - Croplands, grasslands, livestock, land use change
  - Screening for feasible ones
- 2. Determining business as usual activities, emissions and farmers' profits
- 3. Quantifying cost-effectiveness (CE) of each measure
  - Estimating the abatement potential (AP)
  - Estimating the cost of each measure
- 4. Interaction of measures: adjusting AP and CE
- 5. Drawing the MAC curve

## A mitigation measure example



#### Better timing of mineral fertilizer application

- Applicability: 70% of arable land (of 0.494 M ha), 80% of grassland (of 1.242 M ha), 70% of other land (of 0.065 M ha) = 1.385 M ha
- 2. Abatement rate: 0.3 t CO2e/ha/y
- 3. Uptake rate (2022, maximum technical potential): 100%
- 4. Total GHG abatement = 359 kt CO2e/y
- 5. Cost: £ -31.01 /ha/y (based on farm model)
- 6. Cost-effectiveness = £ -103 /tCO2e

## What does a MAC curve tell us? SAC



- Decreasing order of cost-effectiveness
- Width of bars: abatement potential
- Height of bars: cost-effectiveness

## MACC (2008) and MACC Update (2010)



#### SAC MACC

 relying highly on research results from Strategic Research Programmes 2006-2011

➡ CCC report 2008: Building a low-carbon economy the UK's contribution to tackling climate change

⇒ CCC Scottish report 2010: Scotland's path to a lowcarbon economy

#### SAC MACC Update

addressing uncertainties, input from reviews, CCC, industry

⇒ CCC report 2010: The Fourth Carbon Budget -Reducing emissions through the 2020s

## **MACC (2008)**



MACC for Scotland, 2022, maximum technical potential



7/10/2011

**Eory-Moran** 

# MACC Update (2010) - optimistic

MACC for Scotland, 2022, maximum technical potential



**Eory-Moran** 

# MACC Update (2010) - pessimistic SAC



#### **Policy assessment**



#### **Key stages**

- 1. Selecting mitigation measures (MMs) to be targeted
- 2. Assigning MMs to policies
- 3. Estimating uptake for each MM triggered by each policy (accounting for policy interactions)
- 4. Adding up MMs' GHG abatement and private cost (accounting for measure interactions)
- 5. Adding policy costs to private costs
- 6. Calculating cost-effectiveness for each policy
  CE = costs / GHG abatement

## **RPP1**



#### Based on MACC (2008)

|                                                                    | FFBC         | X-comp.      | SRDP         |
|--------------------------------------------------------------------|--------------|--------------|--------------|
| CE (£/tCO2e)                                                       | -157         | -98          | 24           |
| GHG abatement in 2022 (ktCO2e)                                     | 326          | 540          | 18           |
| Improved timing of mineral fertiliser application                  | $\checkmark$ | ✓            |              |
| Improved timing of slurry and poultry manure application           | $\checkmark$ | $\checkmark$ |              |
| Full allowance on manure nitrogen supply                           | ✓            | $\checkmark$ |              |
| Plant varieties with improved nitrogen use efficiency              | $\checkmark$ |              |              |
| Avoiding nitrogen excess                                           | ✓            | $\checkmark$ |              |
| Use composts, straw based manures in preference to slurry          | $\checkmark$ |              |              |
| Separate slurry applications from fertiliser appl. by several days | ✓            |              |              |
| Improved genetic potential for beef cattle                         | $\checkmark$ |              |              |
| Probiotics for beef                                                | ✓            |              |              |
| AD – Fattening pigs – large farms                                  |              |              | $\checkmark$ |
| AD – Fattening pigs – medium farms                                 |              |              | ✓            |
| AD – Beef cattle – large farms                                     |              |              | $\checkmark$ |
| AD – Dairy cattle – large farms                                    |              |              | ✓            |
| AD – Large poultry units                                           |              |              | $\checkmark$ |

#### **RPP2 – New values for MACC**



#### Based on MACC Update (2010), updated with Scottish values:

- **Baseline activity data:** new FAPRI estimates instead of BAU3 estimates (FAPRI: slightly lower arable land area and livestock numbers, higher grassland areas)
- Applicability rates and abatement rates: refined to reflect Scottish circumstances by RESAS and Agriculture and Climate Change Stakeholder Group
- **Policy assumptions:** to be refined by RESAS

#### **RPP2 – Consultation**





#### **RPP2 – MACC 2011**





## **RPP2 – Changes in the MACC**



#### Main changes in the MACC relevant to RPP:

- Better timing of mineral nitrogen: abatement rate reduced to 1/3 of original value by SG-ACCSG
- Better timing of organic nitrogen: applicability rates reduced to ½-1/3 of original value in MACC Update (2010)

 Avoid applying nitrogen in excess, Full allowance of manure N supply, Plants with improved nitrogen-use efficiency: either applicability or abatement rates reduced, either in MACC Update (2010) or by SG-ACCSG

#### Minor changes relevant to RPP:

• Separate slurry applications from fertiliser applications by several days, Reduced tillage, Use composts in preference to slurry: increase in GHG abatement, but low total abatement

• Dairy/Beef AD: reduction in GHG abatement, but low total abatement

## **RPP2 – Work in progress**



#### Based on the new Scottish MACC (2011), RPP1 policy mix

|                                                                   | FFBC         | X-comp. | SRDP         |
|-------------------------------------------------------------------|--------------|---------|--------------|
| CE (£/tCO2e)                                                      | -201         | -96     | 72           |
| GHG abatement in 2022 (ktCO2e)                                    | 169          | 192     | 10           |
| Improved timing of mineral fertiliser application                 | ✓            | ✓       |              |
| Improved timing of slurry and poultry manure application          | $\checkmark$ | ✓       |              |
| Full allowance on manure nitrogen supply                          | -            | ✓       |              |
| Plant varieties with improved nitrogen Hsc efficiency             | ×            |         |              |
| Avoiding nitrogen exces                                           | ~            | 1       |              |
| Use composts, straw bas d man in preference to slurry             |              |         |              |
| Separate slurry applications from fertiliser appl. by sucral rais | 120          |         |              |
| Improved genetic potential for leaf carac                         | ~            |         |              |
| Probiotics for be.                                                | $\checkmark$ |         |              |
| AD – Fattening pig- – large farms                                 |              |         | $\checkmark$ |
| AD – Fattening pigs – medium farms                                |              |         | ✓            |
| AD – Beef cattle – large farms                                    |              |         | $\checkmark$ |
| AD – Dairy cattle – large farms                                   |              |         | $\checkmark$ |
| AD – Large poultry units                                          |              |         | ✓            |

## Acknowledgements



#### **Funders:**

This analysis has been undertaken with Scottish Government funding to SAC. We would like to thank Emma Close and Kathy Johnston for their valuable input.

#### **Collaborators:**

Michael MacLeod Alistair McVittie Bob Rees Glyn Jones David Harris Steve Antony Eileen Wall Andrew Barnes Kairsty Topp Bruce Ball Steve Hoad Lel Eory