
Relative Carbon Efficiency of four divergent Dairy Production Systems

Stephen A Ross – PhD Student SAC Dairy Research Centre, Dumfries

Dairy contribution to GWP at systems level

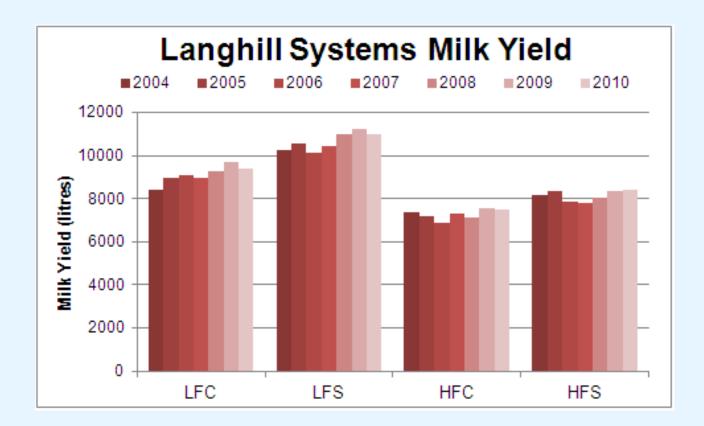
- Substantial unavoidable component
 ... but opportunities for mitigation
- Studies in literature examined dairy systems and components at national and farm levels
- Directly comparable analyses of potential for variation amongst production systems sparse

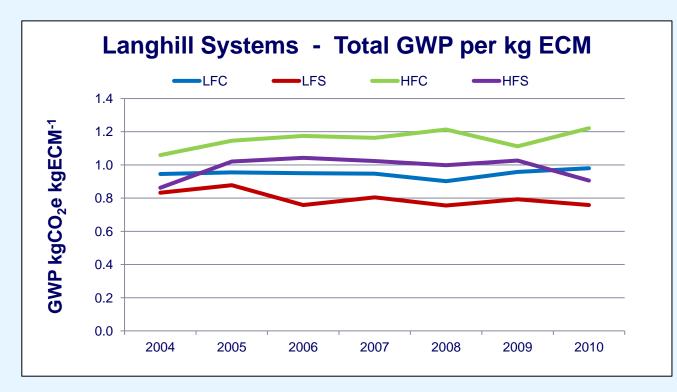


- Examine the relative environmental impacts of four divergent conventional dairy production systems
- Analysis by Life Cycle Assessment (LCA)
 - Direct comparison of 4 systems over 7 years
 - SAC Langhill database
 - Tier 3 methodology where possible
 - Impact Assessment using SAC Carbon Calculator

Dairy Production Systems

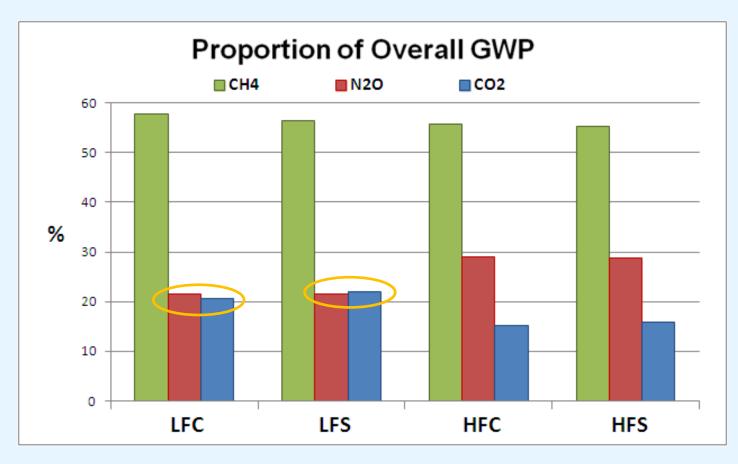
- Langhill herd at Crichton Royal Farm
- Long term Holstein-Friesian genetic & management systems project
- Four divergent dairy systems: HFC, HFS, LFC, LFS




• $\Delta \sim 3000$ litres per head annually between systems

- GWP expressed per unit Energy Corrected Milk
- Rank analysis: clear separation between systems
 (1) LFS
 (2) LFC
 (3) HFS
 (4) HFC
 (P<0.001)

- Low Forage more efficient than High Forage
- Select more efficient than Control



• Contribution of each GHG:

GWP attributed to contributing factors:

		LFC		LFS		HFC		HFS	
		μ	sd	μ	sd	μ	sd	μ	sd
CH4									
Enteric	kgCO ₂ e kgECM ⁻¹	0.48	0.02	0.40	0.02	0.56	0.04	0.47	0.04
Excreta		0.09	0.00	0.07	0.00	0.10	0.01	0.09	0.01

- Gross enteric CH₄ emissions ~6% less per cow in HF but HFC 40% higher than LFS per kg ECM
- Similar gross CH₄ emissions from manure across systems
- LFS / HFC again extremes and LFC / HFS closely matched

• GWP attributed to contributing factors:

		LFC		LFS		HFC		HFS	
		μ	sd	μ	sd	μ	sd	μ	sd
N ₂ O									
Fertiliser	kgCO ₂ e kgECM ⁻¹	0.06	0.01	0.06	0.01	0.10	0.03	0.09	0.02
Excreta	"	0.15	0.01	0.12	0.01	0.24	0.02	0.20	0.02

- Gross emissions per cow, HF produce 29% more N₂O from inorganic fertilisers and 33% more from animal wastes
- Measured against productivity, HFC produces double the N₂O from animal wastes compared to LFS
- HF fertiliser emissions 59% higher than LF per kg ECM

• GWP attributed to contributing factors:

		LFC		LFS		HFC		HFS	
		μ	sd	μ	sd	μ	sd	μ	sd
CO ₂									
Import Fertiliser	kgCO ₂ e kgECM ⁻¹	0.02	0.00	0.02	0.00	0.04	0.01	0.03	0.01
Import feeds	"	0.10	0.01	0.08	0.01	0.07	0.01	0.06	0.00
Electricity	"	0.03	0.00	0.03	0.00	0.02	0.00	0.02	0.00
Diesel use	II	0.05	0.01	0.04	0.01	0.05	0.01	0.04	0.01

- Gross emissions associated with feed imports 45% higher in LF, and electricity 34% higher
- Per kg ECM, margins smaller but HF still lower than LF

- Highest contributors to GWP in all systems:
 - enteric methane (48-50%)
 - followed by animal wastes (24-30%)
- But... key factors in variation between systems:
 - Off-farm CO₂ emissions higher in LF (due to imports)
 - N₂O emissions much higher in HF (due to increased land, fertiliser, excreted nitrogen and deposition at pasture)
- High gross LF emissions offset by high productivity
 Not the case for HF

- Observed potential for great variation in GWP amongst conventional dairy production systems
- System and genotype significantly influence GWP
 - Low Forage more efficient than High Forage
 - Select more efficient than Control
- Moving from HFC towards LFS system holds potential for up to 30% reduction in carbon footprint

Acknowledgements

Dr Mizeck Chagunda, Dr Kairsty Topp Scottish Agricultural College

Dr Richard Ennos University of Edinburgh

Colleagues and staff at: SAC Dairy Research Centre, Dumfries Crichton Royal Farm, Dumfries Rural Business Unit, Bush

PhD Studentship funded by the Scottish Government

SAC

Svccess through Knowledge

Consistency across groups

- Staff
- Housing
- 3 x daily milking
- Health and fertility
- Young stock rearing
- S and C managed together
- Replacement rate 3 lactations
- Same conserved forages offered
- One complete forage offered within system

Life Cycle Inventory

- Processes leading to milk leaving farm
- System-specific in depth data compiled on:
 - Populations & herd dynamics
 - Productivity
 - Energy and fuel use
 - Feeding intake and imports
 - Forage crops and land requirements
 - Fertiliser application
 - Management of animal wastes
 - Specific coefficients for entericCH₄ & excretedN

• Systems GWP per unit Energy Corrected Milk:

System	LFC	LFS	HFC	HFS	
	µ s.d	µ s.d	µ s.d	µ s.d	
Milk Yield kg ECM hd-1year-1	9246 800	10753 853	7281 533	8189 656	
CO ₂ kgCO ₂ e kgECM ⁻¹	0.18 0.01	0.16 0.01	0.16 0.02	0.14 0.02	
CH ₄	0.56 0.03	0.46 0.02	0.66 0.04	0.56 0.05	
N ₂ 0	0.21 0.02	0.18 0.02	0.34 0.05	0.29 0.04	
Total GWP	0.95 0.05	0.80 0.05	1.17 013	0.99 0.14	
Efficiency Rank* (P<0.001)	2	1	4	3	